
Achieving High Sustained Performance
in an Unstructured CFD Application

Dinesh K. Kaushik
CS Dept., Old Dominion University & Argonne

William D. Gropp
MCS Division, Argonne National Laboratory

David E. Keyes
Math & Stat Dept., Old Dominion University & ICASE

Barry F. Smith
MCS Division, Argonne National Laboratory

http://www.mcs.anl.gov/petsc-fun3d

Organization of the Presentation

• Performance issues for unstructured grid
solvers

• Background of FUN3D and PETSc
• Parallelization philosophy
• Summary of serial and parallel performance

Solving Unstructured Mesh
Problems in Serial

• Loss of regularity in unstructured mesh
solvers
– makes them more memory intensive
– reduces the locality in data reference patterns

(which is required for good cache performance)
– requires very high memory bandwidth since

cache lines might be loaded multiple times
– requires many integer operations that make

these solvers more susceptible to operation
issue limitations

Solving Unstructured Grid
Problems in Parallel

• SPMD parallelization of unstructured grid
solvers is complicated by the fact that no
two interprocessor data dependency patterns
are alike

• The user-provided global ordering may be
incompatible with the subdomain-
contiguous ordering required for high
performance and convenient SPMD coding

Description of PETSc-FUN3D
(http://www.mcs.anl.gov/petsc-fun3d)

• PETSc-FUN3D is the result of porting FUN3D (developed by W. K.
Anderson, NASA Langley) to PETSc toolkit

• Tetrahedral vertex-centered unstructured grid code for incompressible
and compressible Euler and Navier-Stokes equations

• 1st- or 2nd-order Roe for convection and Galerkin for diffusion, and
false time stepping with backward Euler for nonlinear continuation
towards steady state

• Newton-Krylov-Schwarz (fully implicit, matrix free) solver; the
timestep is advanced towards infinity by the switched
evolution/relaxation (SER) of Van Leer and Mulder

• The preconditioner (incomplete LU with zero fill) in each domain is
derived from from 1st-order accurate jacobian

Overview of PETSc
(http://www.mcs.anl.gov/petsc)

• Gives relatively high-level expression to
preconditioned iterative linear solvers, and
Newton iterative methods

• Ports wherever MPI ports; committed to
progressive MPI tuning

• Permits great flexibility (through object-
oriented philosophy) for algorithmic
innovation

• Callable from FORTRAN77, C, and C++

Parallelization Philosophy

• Follow the ``owner computes'' rule under the dual
constraints of minimizing the number of messages and
overlapping communication with computation

• Each processor ``ghosts'' its stencil dependences in its
neighbors

• Ghost nodes ordered after contiguous owned nodes
• Domain mapped from (user) global ordering into local

orderings
• Scatter/gather operations created between local sequential

vectors and global distributed vectors, based on runtime
connectivity patterns

• Newton-Krylov-Schwarz operations translated into local
tasks and communication tasks (nonblocking for overlap
where hardware supports

Pseudo-Transient Newton-Krylov-Schwarz Algorithm
(after Cai, Gropp, Keyes, and Tidriri (1994))

for (l = 0; l < n_time; l++) {
SELECT TIME-STEP
for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {
forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently
} // End of loop over subdomains
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients
CHECK LINEAR CONVERGENCE

} // End of linear solver
perform DAXPY update
CHECK NONLINEAR CONVERGENCE

} // End of nonlinear loop
} // End of time-step loop

Performance Tuning - Three Fronts

• Algorithmic Tuning
– Choose ``optimal'' compromise of large number

of nonorthogonal parameters

• Data Layouts
– Stay in harmony with the memory hierarchy

• Compiler Transformations
– Free the compiler to do what it does the best

Algorithmic Tuning for NKS Solver

• Continuation parameters: discretization order, initial
timestep, timestep evolution

• Newton parameters: convergence tolerance, globalization
strategy, Jacobian refresh frequency

• Krylov parameters: convergence tolerance, subspace
dimension, restart number, orthogonalization mechanism

• Schwarz parameters: subdomain number, subdomain
solver, subdomain overlap, coarse grid usage

• Subproblem parameters: fill level, number of sweeps

Algorithmic Tuning -
Continuation Parameters

• SER heuristic

• Parameters of Interest
– Initial CFL number
– Exponent in the Power Law

• = 1 normally
• > 1 for first-order discretization (1.5)
• < 1 at outset of second-order discretization (0.75)

• Switch over Ratio between FO and SO

p

u lf

uf
N CFLN l

CFL

−
=

)1(

)0(
0

Effect of Initial CFL Number

Algorithmic Tuning - Krylov Parameters

• Relative Convergence tolerance
– Moderate values (0.01-0.001) works well for

most of the cases run
• Subspace dimension

– Depends on the problem size
– Typical values range from 10 (for smallest

problem) to 60 for the largest problem
• Restart number

– Dependent on the available memory
– Typical values are 15 to 30

Data Layouts - Enhancing Locality

• Choose data layouts that enhance locality at every level of memory
hierarchy

• Storage/use patterns should follow memory hierarchy
– Blocks for registers

• Block storage format for multicomponent systems - saves CPU cycles
– Interlaced data structures for cache

• Choose
u1,v1,w1,p1,u2,v2,w2,p2,…

In place of
u1,u2,…,v1,v2,…,w1,w2,…,p1,p2,…

– Subdomains for distributed memory
• “Chunky” domain decomposition for optimal surface-to-volume

(communication-to-computation) ratio
– This hierarchy is concerned with different issues than the algorithmic

efficiency issues associated with the hierarchies of grids

Data Layouts - Reorderings

• Edge reordering
– Sort the nodes at either ends of the edges
– Effectively transforms an edge based loop into a node

based loop
– Enhances temporal locality

• Node reordering
– Bandwidth reducing orderings reduce the TLB and

cache misses by referring to data items that are close in
memory.

– Our experience is with RCM and Sloan

Locality Enhancing Strategies in
PETSc-FUN3D

• Flow over M6 wing with a grid of 22,677 vertices
(90,708 DOFs incompressible; 113,385
compressible)

• Turn on each optimization one by one to isolate
the effect of each

• Employed the best optimization flags
• Five Architectures considered: Cray T3E, IBM

SP, Origin 2000, Intel Pentium, and Sun Ultra
• Impact of these techniques vary on different

architectures - improvement ranges from 2.5 on
Pentium to 7.5 on SP

Sequential Performance- Time/iter (sec)
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2

Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

TLB Misses:
Measured Values on Origin

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

Base NOER Interlacing NOER Blocking NOER
Base Interlacing BlockingLog scale!

Primary Cache Misses:
Measured Values on Origin

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Secondary Cache Misses:
Measured Values on Origin

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Effect of Data Partitioning Strategies

• pmetis attempts to
balance the number of
nodes and edges on
each partition

• kmetis tries to reduce
the number of non-
contiguous
subdomains and
connectivity of the
subdomains

• kmetis gives slightly
better scalability

ASM Preconditioner with Different
Overlap Sizes

Fixed Size Problem with 1.2 million unknowns on T3E-900

908173.81028171.51094160.4128

906285.5912284.91033293.064

791498.1850498.3968555.732

8451026.3849981.89651068.516

Linear itstimeLinear itstimeLinear itstime
Overlap=2Overlap=1Overlap=0

p

Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with
dual Pentium Pro 333 MHz processors)

Parallel Performance on SGI/Cray T3E
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices

(about 11 million unknowns) on up to 1024 Cray T3E 600 MHz
processors

Summary

• The per-processor performance is crucial to get good
parallel performance

• Data structure transformations (like blocking, interlacing,
and edge reordering), that enhance the temporal and spatial
locality in the memory reference patterns, have improved
the performance by a large factor (2.5 on Pentium and 7.5
on SP2)

• ? NKS solver shows excellent scalability on ASCI Red
(128 to 3072 processors) and T3E (128 to 1024
processors).

Sequential Performance of PETSc-FUN3D

0
100
200
300
400
500
600
700
800
900

SP2 Origin T3E

Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

Per Processor Performance on T3E
Euler flow over an ONERA M6 Wing, on a tetrahedral grid of 2.8 M

vertices, run up to 1024 processors of a 600 MHz T3E

0
10
20
30
40
50
60
70
80
90

100

128 256 384 512 640 768 896 1024

Mflop/s per Processor

Three Fundamental Limiting
Factors to Peak Performance

• Memory Bandwidth
– Processor does not get data at the rate it requires

• Instruction Issue Rate
– If the loops are load/store bound, we will not be able to

do a floating point operation in every cycle even if the
operands are available in primary cache

– Several constraints (like primary cache latency, latency
of floating point units etc.) are to be observed while
coming up with an optimal schedule

• Fraction of Floating Point Operations
– Every instruction is not floating point instruction

Analyzing A Simple Kernel:
Sparse Matrix Vector Product

• Sparse matrix vector product is important
part of many iterative solvers

• Its performance modeling is easy
• We present simple analysis to predict better

performance bounds (based on the three
architectural limits) than the “marketing”
peak of a processor

Performance Issues for Sparse Matrix
Vector Product

• Little data reuse
• High ratio of load/store to

instructions/floating-point ops
• Stalling of multiple load/store functional

units on the same cache line
• Low available memory bandwidth

Sparse Matrix Vector Algorithm:
A General Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1) { // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}

Estimating the Memory
Bandwidth Limitation

Assumptions

• Perfect Cache (only compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double))
// ia, N input (size n) and output (size m) vectors

+ nz* (sizeof(int) + sizeof(double))
// ja, and a arrays

= 4*(m+nz) + 8*(N*(m+n)+ nz)

• Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
• For square matrices,

(Since nz >> n, Bytes transferred / fmadd ~12/N)

• Similarly, for Block AIJ (BAIJ) format

Estimating the Memory
Bandwidth Limitation (Contd.)

N

nz
n

)*
N

 (
124

16 ed/fmadd transferrBytes ++=

)
8

*
4

(*
*
4

16 ed/fmadd transferrBytes
NbN

nz
n

)
bN

(+++=

Performance Summary on 250
MHz R10000

• Matrix size, n = 90,708; number of nonzero entries, nz = 5,047,120
• Number of Vectors, N = 1, and 4

(*here the vectors are multiplied with the matrix one by one i.e. matrix has been streamed
4 times. Also note that the observed MFlops for N =1 and this case are the same, as they

should be).

Bandwidth MFlopsFormat Number
of

Vectors

Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4* 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4* 55
BAIJ 4 2.54 635 229 305 175

Prefetching - Fully Use the
Available Memory Bandwidth

• Many programs are not able to use the available
memory bandwidth for various reasons

• Ideally a memory operation should be scheduled
in each cycle since each cycle is a lost opportunity

• Compilers do not do enough prefetching
• Implementing and estimating the right amount of

prefetching is hard

Estimating the Operation Issue Limitation
AT:address transln; Br: branch; Iop: integer op; Fop: floating

point op; Of: offset calculation; Ld: load; St: store

for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN // N Ld
for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow))
// 1 Of, N+2 AT, and Ld

do N fmadd (floating multiply add) // 2N Fop
} // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

} // 1 Iop, 1 Br

Estimating the Operation Issue
Limitation (Contd.)

• Assumptions:
– Data items are in cache
– Each operation takes only one cycle to complete but multiple

operation can graduate in one cycle
• If only one load or store can be issued in one cycle (as is the case on

R10000 and many other processors), the best we can hope for is

• Other restrictions (like primary cache latency, latency of floating point
units etc.) need to be taken into account while creating the best
schedule (especially on those processors where software pipelining is
important)

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

Estimating the Fraction of Floating Point
Operations

• Assumptions:
– infinite number of functional units
– data items are in primary cache

• Estimated number of floating point operations out of the
total instructions:

• For N=1, If = 0.18 and N = 4, If = 0.34.

9)N*(4*nz8)N*(3*m
nz*N*2

)(I point work floatingon spent Fraction

9)N*(4*nz8)N*(3*m)(I completed nsinstructio ofnumber Total

f

t

+++
=

+++=

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP Origin T3E Pentium Ultra II

Theoretical Peak
Mem BW Peak
Oper. Issue Peak
Observed

Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

50

100

150

200

250

300

SP Origin T3E Pentium Ultra II

Mem BW Peak
Oper. Issue Peak
Observed

T3E Performance - A Closer
Look

0

10

20

30

40

50

60

70

80

90

100

Stream On Stream Off

Memory BW Peak
Observed

Implications

• Reducing memory use is critical
– Reuse data items
– Reuse items in cache
– Other memory effects also important (see TLB,

ahead)

• Reducing the number of non-floating-point
instructions is also important
– Reuse items in registers (reduce loads, address

computation)

Graduated Loads and Stores Per
Floating Point Instruction

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Conclusions

• The per-processor performance is crucial to get good parallel
performance

• Our models predict the performance of sparse matrix-vector operations
on a variety of platforms, including the effects of memory bandwidth,
and instruction issue rates

• The achievable "peak performance" for these operations is a small
fraction of the stated peak, independent of code quality

– compiler improvements can help a little but will not solve the problem

• Intelligent prefetching is required to fully utilize the available memory
bandwidth

• Data structure transformations (like blocking, interlacing, and edge
reordering), that enhance the temporal and spatial locality in the
memory reference patterns, have improved the performance by a large
factor (2.5 on Pentium and 7.5 on SP2) .

Future Directions

• Design better data structures and implementation strategies
for sparse matrix vector and related operations

• Integrate our understanding of the performance issues with
developments in block-structured algorithms to produce
linear and nonlinear solvers that achieve a higher fraction
of peak performance on a per-node basis

• Look at important special cases in hierarchical algorithms
where our performance model recommends alternate data
structures and library methods

References

• On the interaction of Architecture and Algorithm in the Domain-Based
Parallelization of an Unstructured Grid Incompressible Flow Code
(Kaushik, Keyes, and Smith), 1998, in “Proc. Of the 10th Intl. Conf.
On Domain Decomposition Methods”, J. Mandel et al., eds., AMS, pp.
311-319.
– Cache-aware focus

• Newton-Krylov-Schwarz Methods for Aerodynamic Problems:
Compressible and Incompressible Flows on Unstructured Grids
(Kaushik, Keyes, and Smith), 1998, submitted to “Proc. of the 11th
Intl. Conf. On Domain Decomposition Methods”, C.-H Lai et al., eds.
– Multi-platform focus

• Download from http://www.mcs.anl.gov/petsc-fun3d

